首页 | 本学科首页   官方微博 | 高级检索  
     

基于气体传感器阵列的混合气体定量分析
引用本文:太惠玲,谢光忠,蒋亚东. 基于气体传感器阵列的混合气体定量分析[J]. 仪器仪表学报, 2006, 27(7): 666-670
作者姓名:太惠玲  谢光忠  蒋亚东
作者单位:电子科技大学光电信息学院新型传感器教育部重点实验室,成都,610054
摘    要:优选CO和H2气体敏感的半导体气体传感器组成阵列,建立实时数据采集系统,结合BP神经网络模式识别技术,实现了混合气体组分的定量分析。讨论了不同响应时间下的阵列输出值、不同的数据预处理算法及不同的神经网络结构等主要影响因素对网络输出结果的影响。结果表明,采用RRD预处理算法对3min响应时间下的阵列输出值进行处理,再输入到有12个隐层神经元数的3层BP神经网络进行训练,预测的效果最好。该处理模式能较准确地完成CO和H2混合气体组分的定量分析。

关 键 词:气体传感器阵列  BP神经网络  定量分析
修稿时间:2005-01-01

Gas quantitative analysis based on the gas sensor array
Tai Huiling,Xie Guangzhong,Jiang Yadong. Gas quantitative analysis based on the gas sensor array[J]. Chinese Journal of Scientific Instrument, 2006, 27(7): 666-670
Authors:Tai Huiling  Xie Guangzhong  Jiang Yadong
Abstract:The semiconductor gas sensors sensitive to carbon monoxide and hydrogen were chosen to compose the gas sensor array,and an on-line data acquisition system was constructed.Combining with the pattern recognition techniques of back-propagation(BP) neuron network,the system was used to carry out the quantitative analysis of the partial gas concentration in a mixture.The main effect factors to the outputs of BP neuron network,such as array outputs under different response time,the different pre-processing algorithms and the different structures of the neural network,are discussed in this paper.It is shown that the best prediction results are obtained when the array output under 3 min response time is processed using RRD pre-processing algorithm and used as the actual input of the neural network,then the training and testing of this three-layer BP neuron network with 12 neurons in hidden layer are performed.This processing mode can accomplish the quantitative analysis of the partial gas concentration of the mixture(hydrogen and carbon monoxide) accurately.
Keywords:gas sensor array Back-Propagation neural network quantitative analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号