首页 | 本学科首页   官方微博 | 高级检索  
     

基于均匀设计和遗传算法的离心压缩机叶片优化设计
引用本文:舒信伟,谷传纲,肖军,高闯. 基于均匀设计和遗传算法的离心压缩机叶片优化设计[J]. 动力工程, 2007, 27(5): 713-716
作者姓名:舒信伟  谷传纲  肖军  高闯
作者单位:上海交通大学,机械与动力工程学院,上海,200030
摘    要:将均匀设计、CFD技术、回归分析方法与遗传算法相结合,发展了一种离心压缩机叶片优化设计方法.均匀设计用来生成试验样本点几何信息,各样本点性能评估分析则借助CFD技术完成,回归分析方法用于对样本点的信息进行函数逼近,最后由遗传算法对回归分析得到的逼近函数进行全局寻优.以极大化等熵效率为目标函数,将该优化方法应用于某离心压缩机叶片优化设计.结果表明:与初始叶轮相比,优化后叶轮的等熵效率有了一定的提高,说明该优化方法是有效的.

关 键 词:能源与动力工程  压缩机  优化设计  叶片  均匀设计  遗传算法
文章编号:1000-6761(2007)05-713-04
修稿时间:2006-11-10

Optimization Design of Centrifugal Compressor Blades, Based on the Uniform Design Method and Genetic Algorithm
SHU Xin-wei,GU Chuan-gang,XIAO Jun,GAO Chuang. Optimization Design of Centrifugal Compressor Blades, Based on the Uniform Design Method and Genetic Algorithm[J]. Power Engineering, 2007, 27(5): 713-716
Authors:SHU Xin-wei  GU Chuan-gang  XIAO Jun  GAO Chuang
Affiliation:School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:An approach to optimization design,of centrifugal compressor blades,which incorporates the uniform design method,CFD analysis technique,regression analysis method and genetic algorithm,is being presented.Uniform design is used to generate geometric information of trial samples,the performance of which are evaluated and analyzed by CFD technique.Function approximation of sample information is performed by the regression analysis method.Finally global optimization of the approximative functions is obtained by applying genetic algorithm.Taking maximal isentropic efficiency as the object function,this optimization method has been applied to the optimal design of a certain centrifugal compressor blade.Results show that the isentropic efficiency of the bladed wheel got improved,as compared with that of the original,which vindicates the effectiveness of the proposed optimization approach.
Keywords:energy and power engineering  compressor  optimization design  blade  uniform design  genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号