首页 | 本学科首页   官方微博 | 高级检索  
     

基于Bayes决策理论的表面肌电信号模式分类的研究
引用本文:崔建国,李一波,李忠海,王旭,张春霞. 基于Bayes决策理论的表面肌电信号模式分类的研究[J]. 计量学报, 2007, 28(1): 89-92
作者姓名:崔建国  李一波  李忠海  王旭  张春霞
作者单位:沈阳航空工业学院自动控制系,辽宁,沈阳,110034;东北大学信息科学与工程学院,辽宁,沈阳,110004;沈阳航空工业学院自动控制系,辽宁,沈阳,110034;东北大学信息科学与工程学院,辽宁,沈阳,110004;中国医科大学第一附属医院,辽宁,沈阳,110001
摘    要:通过对采集的四通道表面肌电信号进行分析,对其建立AR(Autoregressive)参数模型,提取AR模型参数构建特征矢量。根据实际表面肌电(SEMG)信号的随机性特征,提出了一种采用Bayes决策理论对肌电信号的AR模型参数特征进行分类的新方法,并运用最小错误率Bayes分类器,很好地实现了对前臂八种动作表面肌电信号的模式分类。平均识别率为99.125%。此外,还提出采用动态聚类中心的方法对其进行了改进,使其平均识别率提高到99.5%。研究表明,采用Bayes分类器对肌电信号的AR模型参数特征进行分类,是一种有效的处理手段,并可直接应用到其它具有随机性特征的生理电信号的模式分类中。

关 键 词:计量学  表面肌电信号  AR参数模型  Bayes决策  模式分类
文章编号:1000-1158(2007)01-0089-04
修稿时间:2005-10-31

Study of Surface EMG Pattern Classification Based on Bayes Decision Technique
GUI Jian-guo,LI Yi-bo,LI Zhong-hai,WANG Xu,ZHANG Chun-xia. Study of Surface EMG Pattern Classification Based on Bayes Decision Technique[J]. Acta Metrologica Sinica, 2007, 28(1): 89-92
Authors:GUI Jian-guo  LI Yi-bo  LI Zhong-hai  WANG Xu  ZHANG Chun-xia
Abstract:Four channel surface electromyographic(SEMG) signals from four corresponding muscles(palmaris longus,brachioradialis,flexor carpi ulnaris,biceps brachii) are analyzed and an autoregressive(AR) parameter model is constructed.Using AR model parameters as signal characteristics,an eigenvector is constructed.To SEMG randomicity characteristic,a novel SEMG pattern classification method,which is based on Bayes decision technique,is proposed.Eight forearm movement patterns are successfully identified by Bayes decision technique and the average identifying ratio is 99.125%.Moreover eight forearm movement patterns average identifying ratio achieves 99.5% after Bayes decision technique is improved on by using floating clustering center.Experiments show that it is an effective method for SEMG pattern classification,which can be straightforwardly expanded to other randomicity bioelectric signals pattern classification study.
Keywords:Metrology  Surface electromyography  AR parameter model  Bayes decision  Pattern classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号