首页 | 本学科首页   官方微博 | 高级检索  
     


Fraunhofer effect atomic absorption spectrometry
Authors:Rust Jennifer A  Nóbrega Joaquim A  Calloway Clifton P  Jones Bradley T
Affiliation:Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
Abstract:The dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines: the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-microL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The solution is dried and ashed by applying low currents to the coil in a three-step procedure. Full power is then applied to the coil for a brief period. During this time, the coil produces white light, which may be absorbed by any metals present in the atomization cloud produced by the sample. A high-resolution spectrometer with a charge-coupled device detector monitors the emission spectrum of the coil, which includes the dark lines from the metals. Detection limits are reported for seven elements: 5 pg of Ca (422.7 nm); 2 ng of Co (352.7 nm); 200 pg of Cr (425.4 nm); 7 pg of Sr (460.7 nm); 100 pg of Yb (398.8 nm); 500 pg of Mn (403.1 nm); and 500 pg of K (404.4 nm). Simultaneous multielement analyses are possible within a 4-nm spectral window. The relative standard deviations for the seven metals are below 8% for all metals except for Ca (10.7%), which was present in the blank at measurable levels. Analysis of a standard reference material (drinking water) resulted in a mean percent recovery of 91%. This report attempts to give an historical perspective on the development of a novel atomic spectrometer based on the Fraunhofer effect.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号