首页 | 本学科首页   官方微博 | 高级检索  
     


Optimum Arrangement of Reliable Label-Switched Paths in MPLS Over Optical Networks
Authors:Nagao Ogino  Hideaki Tanaka
Affiliation:(1) KDDI R&D Laboratories Inc., 2-1-15 Ohara, Kamifukuoka-shi, Saitama 356-8502, Japan
Abstract:In MPLS (Multi-Protocol Label Switching) over optical networks, both the optical level and the MPLS level fault recovery can be considered. Generally, a more flexible path arrangement can be realized by the MPLS level recovery, while fast recovery can be achieved by the optical level recovery. When the optical level recovery is adopted, only normal traffic is carried through the working lightpaths and only recovered traffic is carried through the backup lightpaths. In contrast, the working LSPs (Label-Switched Paths) and the backup LSPs corresponding to other working LSPs can be accommodated into an identical lightpath when the MPLS level recovery is adopted. By such sophisticated accommodation of LSPs into the lightpaths, lightpath bandwidth can be utilized efficiently under the condition that the bandwidth utilization is restricted to attain the given objective of transfer quality for the MPLS packets in the normal state and unrestricted in a short time a failure occurs somewhere in the network. This paper proposes a simple mathematical programming model to obtain the optimum arrangement of the working and backup LSPs assuming the MPLS level recovery and a practical LSPs provisioning mode. By comparing the minimized network cost obtained from the optimum arrangement of the working and backup LSPs with the network cost resulting from the optical level recovery, this paper quantitatively evaluates the effectiveness of such bandwidth utilization improvement obtained from the MPLS level recovery and reveals that the MPLS level recovery can actually reduce the network cost due to its flexible arrangement of LSPs on the lightpaths.
Keywords:MPLS over optical networks  MPLS level fault recovery  Arrangement of working and backup LSPs  Network cost  Mathematical programming model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号