首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture behavior of thixoformed 357-T5 Al alloys
Authors:Chul Park  Sangshik Kim  Yongnam Kwon  Youngseon Lee  Junghwan Lee
Affiliation:(1) the Division of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, 660-701 Chinju, Korea;(2) the Materials Engineering Department, Korea Institute of Machinery and Materials, 641-010 Changwon, Korea
Abstract:The effects of microstructural features on the fracture behaviors, including impact, high-cycle fatigue, fatigue crack propagation, and stress corrosion cracking, of thixoformed 357-T5 (Al-7 pct Si-0.6 pct Mg) alloy were examined. The resistance to impact and high-cycle fatigue of thixoformed 357-T5 tended to improve greatly with increasing volume fraction of primary α. An almost threefold increase in impact energy value was, for example, observed with increasing volume fraction of primary α from 59 to 70 pct. The improvement in both impact and fatigue properties of thixoformed 357-T5 with increasing volume fraction of primary α in the present study appears to be related to the magnitude of stress concentration at the interface between primary α and eutectic phase, by which the fracture process is largely influenced. The higher volume fraction of primary α was also beneficial for improving the resistance to stress corrosion cracking (SCC) in 3.5 pct NaCl solution. The in-situ slow strain rate test results of thixoformed 357-T5 in air and 3.5 pct NaCl solution at various applied potential values demonstrated that the percent change in tensile elongation with exposure decreased linearly with increasing volume fraction of primary α within the range studied in the present study. Based on the fractographic and micrographic observations, the mechanism associated with the beneficial effect of high volume fraction of primary α in thixoformed 357-T5 alloy was discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号