首页 | 本学科首页   官方微博 | 高级检索  
     


Energy-Efficient Operation through Interference Avoidance for Interconnected Bluetooth WPANs
Authors:Petar Popovski  Hiroyuki Yomo  Liljana Gavrilovska  Sergio Guarracino  Ramjee Prasad
Affiliation:(1) Center for TeleInFrastructure (CTIF), Aalborg University, Niels Jernes Vej 12, DK-9220 Aalborg, Denmark;(2) Faculty of Electrical Engineering, University “Sts. Cyril and Methodius', Skopje, Republic of Macedonia
Abstract:A Wireless Personal Area Network (WPAN) provides wireless networking among proximate devices, usually carried by an individual. Bluetooth is a first instance of the WPAN technology. The basic networking entity in Bluetooth is a piconet. Several piconets (WPANs) can be interconnected into a scatternet, which can be considered as an extendable multi-hop ad hoc networking structure. Since Bluetooth operates in the unlicensed ISM band, each piconet uses pseudorandom frequency hopping. If collocated piconets use the same channel simultaneously, the piconets interfere with each other and the transmitted packets are lost in collisions. This interference is termed self-interference. The piconets that are networked into scatternet exhibit spatial overlapping and naturally produce multi-piconet self-interference. The collisions cause retransmissions and increase the energy spent per data portion, which results in energy-inefficient operation. To tackle this problem, in our previous work we have proposed a self-interference avoidance (SIA) mechanism. However, this basic SIA mechanism is oblivious with respect to the physical topology and does not account for the mitigation of self-interference due to the propagation effects. Furthermore, the basic SIA mechanism relies on the assumption that all piconets are using packets of identical and fixed length. In this paper we will generalize the SIA mechanism to overcome the stated restrictions. We propose the adaptive SIA (A-SIA) algorithm, which adapts the SIA algorithm to the actual interference. The simulation results show that A-SIA largely retains the energy gain offered by the SIA algorithm, while significantly improving the goodput. We also design an instance of the SIA mechanism that operates with variable-length packets, referred as generalized SIA (G-SIA) algorithm. Our simulation results show that the G-SIA algorithm offers good performance in terms of goodput and energy efficiency, but the goodput is degraded if inappropriate segmentation/reassembly policy is used. Petar Popovski received the Dipl.-Ing. in electrical engineering and M.Sc. in communication engineering from the Faculty of Electrical Engineering, Sts. Cyril and Methodius University, Skopje, Macedonia, in 1997 and 2000, respectively and a Ph.D. degree from Aalborg University, Denmark, in 2004. He is currently Assistant Research Professor at the Department of Communication Technology at the Aalborg University. His research interests are focused on wireless ad hoc networks, wireless sensor networks, and high-speed wireless multi-carrier communications. Hiroyuki Yomo received B.S. degree in communication engineering from Department of Communication Engineering, Osaka University, Osaka, Japan, in 1997, and M.S. and Ph.D. degrees in communication engineering from Department of Electronic, Information, and Energy Engineering, Graduate School of Engineering, Osaka University, Osaka Japan, in 1999 and 2002, respectively. From April 2002 to March 2004, he was a Post-doctoral Fellow in Department of Communication Technology, Aalborg University, Denmark. From April 2004 to September 2004, he was working at NEC Corporation, Japan. Since October 2004, he has been an Assistant Research Professor in Center for TeleInfrastructure (CTIF), Aalborg University, Denmark. His research interests include medium access protocols, link-layer techniques, routing protocols, and their interactions in wireless networks. Liljana Gavrilovska received her B.Sc., M.Sc. and Ph.D. from University of Skopje (76), University of Belgrade (85) and University of Skopje (95) respectively. She joined the Faculty of Electrical Engineering, University of Skopje, Republic of Macedonia, where she currently holds positions of Professor at the Institute for Telecommunications, chief of Telecommunications Laboratory and head of CWMC (Center for Wireless and Mobile Communications), working in the area of networking and mobile communications. During 2001–2002 she joined the Centre for PersonKommunikation, Aalborg University, Denmark, where she was holding a position as Associate Research Professor and was involved in several EU (ASAP, PACWOMAN, MAGNET) and national/international projects. She is still working part-time for CTiF, Aalborg University, Denmark. Her major research is concentrated on ad hoc networking, wireless and personal area networks, cross layer optimizations, future mobile systems, traffic analysis and admission techniques. She is a senior member of IEEE and serves as a Chair of the Macedonian Communications Chapter. Ramjee Prasad is a distinguished educator and researcher in the field of wireless information and multimedia communications. During February 1988–May 1999 he has been with the Telecommunications and Traffic-Control Systems Group of Delft University of Technology (DUT), The Netherlands, where he was actively involved in the area of wireless personal and multimedia communications (WPMC). He was head of the Transmission Research Section of International research Centre for Telecommunications Transmission and Radar (IRCTR) and also Founding Program Director of the Centre for Wireless Personal Communications (CWPC). As from June 1999 Ramjee Prasad joined as the Wireless Information Multimedia Communications chair and co-director of Centre for PersonKommunikation at Aalborg University, Denmark. From January 2004 he is Founding Director of the “Centre for Teleinfrastruktur (CTIF)”. He has published over 500 technical papers, and authored and co-edited 15 books about Wireless Multimedia Communications (Artech House). His research interest lies in wireless networks, packet communications, multiple access protocols, adaptive equalisers, spread-spectrum CDMA systems and multimedia communications. Prof. Prasad is the founding chairperson of the European centre of Excellence in Telecommunications known as HERMES Partnership. He is the General Chairman of International Wireless Summit (IWS 2005) to be held in Aalborg, Denmark in September 17–22, 2005. He is a fellow of the IEE, a fellow of IETE, a senior member of IEEE, a member of NERG, and a member of the Danish Engineering Society (IDA). He is advisor to several multinational companies.
Keywords:Wireless Personal Area Network (WPAN)  Bluetooth  scatternet  energy-efficiency  frequency hopping  interference avoidance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号