首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据差异的多变量统计过程控制
引用本文:郭金玉,何戡. 基于数据差异的多变量统计过程控制[J]. 沈阳化工学院学报, 2006, 20(2): 121-123
作者姓名:郭金玉  何戡
作者单位:沈阳化工学院,辽宁,沈阳,110142
摘    要:研究数据差异(DISSIM)方法在多变量统计过程控制中的应用.为检测过程数据分布变化来监视操作条件变化,并且定量地评价两组数据之间的差异,DISSIM方法定义一种差异指标D.计算D时运用时间窗口,时间窗口对指标D具有平滑作用,与MSPC的统计指标T2或Q相比,D变化平稳.针对多变量自回归过程和TE过程,分别应用MSPC和DISSIM两种方法做仿真试验.仿真结果表明:与MSPC相比,适当选择时间窗口时,DISSIM善于检测过程中小的、缓慢的变化,而且能够检测操作条件的变化,明显改善了监视性能.

关 键 词:主元分析  数据差异  多变量统计过程控制
文章编号:1004-4639(2006)02-0121-03
收稿时间:2005-06-01
修稿时间:2005-06-01

Multivariate Statistical Process Control Based on Dissimilarity of Process Data
GUO Jin-yu,HE Kan. Multivariate Statistical Process Control Based on Dissimilarity of Process Data[J]. Journal of Shenyang Institute of Chemical Technolgy, 2006, 20(2): 121-123
Authors:GUO Jin-yu  HE Kan
Affiliation:Shenyang Institute of Chemical Technology, Shenyang 110142, China
Abstract:This paper studies the application of DISSIM method in multivariate statistics process control.In order to detect a change of operating condition by monitoring a distribution of process data and quantitatively evaluate the difference between two data sets,a dissimilarity index is introduced.A time window is used when the index D is computed.The time window has a smoothing effect.Compared with T~2 or Q,the variation of D is smooth.This paper applies MSPC and DISSIM to simulate for multivariate AR process and TE process.Simulations results demonstrate: Compared with MSPC,DISSIM is good at detecting small and slow changes when a time-window size is appropriately selected.In addition,DISSIM can detect a change of operating condition,so it improves the monitoring performance evidently.
Keywords:principal component analysis   DISSIM   multivariate statistics process control
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号