首页 | 本学科首页   官方微博 | 高级检索  
     


Electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) fiber‐based polymer electrolytes for lithium‐ion batteries
Authors:Wei‐Wei Cui  Dong‐Yan Tang
Affiliation:1. Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin 150001, China;2. College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150001, China
Abstract:Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Keywords:PAMPSLi  fibers  single‐ion conductor  lithium‐ion battery  ionic conductivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号