首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进细菌觅食优化算法及其在软测量建模中的应用
引用本文:李炜,徐卫. 一种改进细菌觅食优化算法及其在软测量建模中的应用[J]. 传感器与微系统, 2013, 32(4)
作者姓名:李炜  徐卫
作者单位:兰州理工大学电气工程与信息工程学院甘肃省工业过程先进控制重点实验室,甘肃兰州,730050
基金项目:国家自然科学基金资助项目
摘    要:针对软测量建模中模型参数的优化需求,在分析细菌觅食优化算法(BFOA)和粒子群优化(PSO)算法的基础上,将二者有机结合,提出了一种新型细菌觅食粒子群混合优化算法(BSOA)。该算法将PSO粒子移动的思想引入BFOA,有效解决了BFOA趋向性操作中细菌位置更新的盲目性。将其分别用于典型函数的寻优与成品油研究法辛烷值最小二乘支持向量机(LSSVM)模型参数的优化,仿真结果表明:该方法有效增强了算法的全局寻优能力与收敛速度,并在一定程度上改善了模型的预测精度与泛化能力。

关 键 词:细菌觅食优化算法  最小二乘支持向量机  软测量  粒子群优化算法

An improved bacteria foraging optimization algorithm and its application in soft measurement modeling
LI Wei , XU Wei. An improved bacteria foraging optimization algorithm and its application in soft measurement modeling[J]. Transducer and Microsystem Technology, 2013, 32(4)
Authors:LI Wei    XU Wei
Abstract:Demand for model parameter optimization in soft measurement modeling,on the basis of analyzing bacteria foraging optimization algorithm(BFOA) and particle swarm optimization(PSO)algorithm,a novel bacterial foraging particle swarm based hybrid optimization algorithm(BSOA) is proposed by taking advantage of both BFOA and PSO.The new algorithm introduces particle moving inspiration of PSO into BFOA,which effectively solves the blindness of the location update in BFOA.The new method is used for typical function optimization and optimization of the parameters of least squares support vector machine(LSSVM) model in research octane number(RON).Simulation results show that this method enhances the global optimization capability and convergence rate of the algorithm,to some extent,improves the prediction precision and generalization ability of the model too.
Keywords:bacteria foraging optimization algorithm(BFOA)  LSSVM  soft measurement  particle swarm optimization(PSO)
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号