首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural evolution in nickel during rolling from intermediate to large strains
Authors:D. A. Hughes  N. Hansen
Affiliation:1. Materials and Processes Research Department, Sandia National Laboratories, 94550, Livermore, CA
2. Ris? National Laboratory, Roskilde, Denmark
Abstract:High-purity nickel (99. 99 pct) with a grain size of 80 to 100 µm was deformed by cold-rolling from 37 to 98 pct reductions (von Mises effective strains ofεvm = 0. 5 to 4. 5). The deformation microstructures and texture at five strain levels were observed and characterized using transmission electron microscopy (TEM) and neutron diffraction. The microstructures evolved within a framework common to medium and high stacking fault energy fee polycrystals. This framework consists of structural subdivision by higher angle boundaries (geometrically necessary boundaries) at one volume scale and at a smaller volume scale by lower angle cell boundaries (incidental boundaries) for all strain levels. We have characterized the dislocation boundaries, including dense dislocation walls (DDWs), microbands (MBs), and lamellar boundaries (LBs) in terms of crystallographic and macroscopic orientations, morphology, and frequency of occurrence. The microstructural evolution is discussed with special emphasis on factors that contribute to the transition from structures characteristic of small and medium strain microstructures to those characteristic of large strain microstructures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号