首页 | 本学科首页   官方微博 | 高级检索  
     


High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh
Authors:Matsunaga Tadashi  Hosokawa Masahito  Arakaki Atsushi  Taguchi Tomoyuki  Mori Tetsushi  Tanaka Tsuyoshi  Takeyama Haruko
Affiliation:Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan. tmatsuna@cc.tuat.ac.jp
Abstract:Here, we report a high-efficiency single-cell entrapment system with a poly(dimethylsiloxane) (PDMS) microfluidic device integrated with a micromesh, and its application to single-cell fluorescence in situ hybridization (FISH) analysis. A micromesh comprising of 10 x 10 microcavities was fabricated on a black poly(ethylene terephthalate) (PET) substrate by laser ablation. The cavity was approximately 2 microm in diameter. Mammalian cells were driven and trapped onto the microcavities by applying negative pressure. Trapped cells were uniformly arrayed on the micromesh, enabling high-throughput microscopic analysis. Furthermore, we developed a method of PDMS surface modification by using air plasma and the copolymer Pluronic F-127 to prevent nonspecific adsorption on the PDMS microchannel. This method decreased the nonspecific adsorption of cells onto the microchannel to less than 1%. When cells were introduced into the microfluidic device integrated with the black PET micromesh, approximately 70-80% of the introduced cells were successfully trapped. Moreover, for mRNA expression analysis, on-chip fluorescence in situ hybridization (e.g., membrane permeabilization, hybridization, washing) can be performed in a microfluidic assay on an integrated device. This microfluidic device has been employed for the detection of beta-actin mRNA expression in individual Raji cells. Differences in the levels of beta-actin mRNA expression were observed in serum-supplied or serum-starved cell populations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号