首页 | 本学科首页   官方微博 | 高级检索  
     


ARAP++: an extension of the local/global approach to mesh parameterization
Authors:Zhao Wang  Zhong-xuan Luo  Jie-lin Zhang  Emil Saucan
Affiliation:1.School of Mathematical Sciences,Dalian University of Technology,Dalian,China;2.School of Software,Dalian University of Technology,Dalian,China;3.Max Planck Institute for Mathematics in the Sciences,Leipzig,Germany
Abstract:Mesh parameterization is one of the fundamental operations in computer graphics (CG) and computeraided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for singleand multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area) of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号