首页 | 本学科首页   官方微博 | 高级检索  
     


Coadsorption of arsenic(III) and arsenic(V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic(III), extraction efficiency, and model accuracy
Authors:Jang Je-Hun  Dempsey Brian A
Affiliation:Environmental Engineering, Pennsylvania State University, 212 Sackett building, University Park, Pennsylvania 16802, USA. jhjang2004@gmail.com
Abstract:Single solute adsorption and coadsorption of As(III) and As(V) onto hydrous ferric oxide (HFO), oxidation of As(III), and extraction efficiencies were measured in 0.2 atm O2. Oxidation was negligible for single-adsorbate experiments, but significant oxidation was observed in the presence of As(V) and HFO. Single-adsorbate As(III) or As(V) were incompletely extracted (0.5 M NaOH for 20 min), but all As was recovered in coadsorbate experiments. Single-adsorbate data were well-simulated using published surface complexation models, but those models (calibrated for single-adsorbate results) provided poor fits for coadsorbate experiments. An amended model accurately simulated single- and coadsorbate results. Model predictions of significant change in As(III) surface complex speciation in coadsorbate experiments was confirmed using zeta potential measurements. Our results demonstrate that mobility of arsenic in groundwater and removal in engineered treatment systems are more complicated when both As(III) and As(V) are present than anticipated based on single-adsorbate experimental results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号