aDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 USA
bDepartment of Geological Sciences, Arizona State University, Tempe, AZ 85287 USA
Abstract:
Surface plasmon resonance (SPR) spectroscopy has been conducted on both prism and fiber optic (FO) based sensors for several years. This technique measures the refractive index (RI) of a solution or layer adsorbed to a thin (50 nm) Au layer on the sensor substrate. To date a succinct set of protocols have not been published regarding the optimization of fiber-based SPR dip-probe sensors. Such sensors would allow application of SPR to a wider variety of applications. This paper focuses on consideration of the choice of fiber, isolation of the mirror from the sensing area, and orientation of the probes in the metal layer sputter deposition chamber in the manufacture of SPR dip-probes for reproducibility and robustness. Optimization of the process yields sensors with a batch to batch reproducibility as low as 0.5 nm in the location of the SPR spectral minima. Further study of RI measurements by the same probe over 2 months show these SPR dip-probes have a long shelf-life. A selection of probes was exposed to various solutions to monitor their drift. The data shows the probes’ response indicated a lowering of the RI measured over a period of 3 or 7 days depending on the probe type. Evidence of surface porosity and damage upon exposure to hydrothermal water seems to indicate these sensors are prone to chemical attack. Further research is needed to characterize this attack and allow creation of more robust sensors.