首页 | 本学科首页   官方微博 | 高级检索  
     


The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae
Authors:Caroline Müller  Monique Schulz  Eleonora Pagnotta  Luisa Ugolini  Ting Yang  Annemarie Matthes  Luca Lazzeri  Niels Agerbirk
Affiliation:1.Department of Chemical Ecology,Bielefeld University,Bielefeld,Germany;2.Council for Agricultural Research and Economics,Research Centre for Cereal and Industrial Crops,Bologna,Italy;3.Copenhagen Plant Science Center and Department of Plant and Environmental Sciences,University of Copenhagen,Frederiksberg C,Denmark
Abstract:We investigated the influences of two structurally similar glucosinolates, phenethylglucosinolate (gluconasturtiin, NAS) and its (S)-2-hydroxyl derivative glucobarbarin (BAR), as well as their hydrolysis products on larvae of the generalist Mamestra brassicae (Lepidoptera: Noctuidae). Previous results suggested a higher defensive activity of BAR than NAS based on resistance toward M. brassicae larvae of natural plant genotypes of Barbarea vulgaris R. Br. (Brassicaceae) dominated by BAR. In the present study, the hypothesis of a higher defensive activity of BAR than NAS was tested by comparing two Barbarea species similarly dominated either by BAR or by NAS and by testing effects of isolated BAR and NAS on larval survival and feeding preferences. Larvae reared on leaf disks of B. verna (Mill.) Asch. had a lower survival than those reared on B. vulgaris P- and G-chemotypes. Leaves of B. verna were dominated by NAS, whereas B. vulgaris chemotypes were dominated by BAR or its epimer. In addition, B. verna leaves showed a threefold higher activity of the glucosinolate-activating myrosinase enzymes. The main product of NAS from breakdown by endogenous enzymes including myrosinases (“autolysis”) in B. verna leaves was phenethyl isothiocyanate, while the main products of BAR in autolyzed B. vulgaris leaves were a cyclized isothiocyanate product, namely an oxazolidine-2-thione, and a downstream metabolite, an oxazolidin-2-one. The glucosinolates BAR and NAS were isolated and offered to larvae on disks of cabbage. Both glucosinolates exerted similar negative effects on larval survival but effects of NAS tended to be more detrimental. Low concentrations of BAR, but not of NAS, stimulated larval feeding, whereas high BAR concentrations acted deterrent. NAS only tended to be deterrent at the highest concentration, but the difference was not significant. Recoveries of NAS and BAR on cabbage leaf disks were similar, and when hydrolyzed by mechanical leaf damage, the same isothiocyanate-type products as in Barbarea plants were formed with further conversion of BAR to cyclic products, (R)-5-phenyloxazolidine-2-thione [(R)-barbarin] and (R)-5-phenyloxazolidin-2-one [(R)-resedine]. We conclude that a previously proposed generally higher defensive activity of BAR than NAS to M. brassicae larvae could not be confirmed. Indeed, the higher resistance of NAS-containing B. verna plants may be due to a combined effect of rather high concentrations of NAS and a relatively high myrosinase activity or other plant traits not investigated yet.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号