首页 | 本学科首页   官方微博 | 高级检索  
     

改进蚁群算法的云计算任务调度方法
引用本文:谢伟增. 改进蚁群算法的云计算任务调度方法[J]. 计算机系统应用, 2017, 26(6): 198-201
作者姓名:谢伟增
作者单位:河南司法警官职业学院 信息技术系, 郑州 450046
摘    要:针对蚁群算法在云计算任务调度问题求解过程存在的不足,以找到最佳的云计算任务调度方案为目标,提出了一种基于改进蚁群算法的云计算任务调度方法.首先对当前云计算任务调度研究现状进行分析,并对问题进行了具体描述,然后采用蚁群算法对云计算任务调度问题进行求解,并针对标准蚁群算法缺陷进行改进,最后在CloudSim平台对该方法的性能进行测试.结果表明,改进蚁群算法可以找到较好的云计算任务问题调度方案,加快云计算任务完成速度,具有一定的实际应用价值.

关 键 词:云计算技术  任务调度问题  蚁群优化算法  仿真测试
收稿时间:2016-08-02
修稿时间:2016-10-27

Task Scheduling Method of Cloud Computing Based on Improved Ant Colony Algorithm
XIE Wei-Zeng. Task Scheduling Method of Cloud Computing Based on Improved Ant Colony Algorithm[J]. Computer Systems& Applications, 2017, 26(6): 198-201
Authors:XIE Wei-Zeng
Affiliation:Department of Information Technology, Henan Judicial Police Vocational College, Zhengzhou 450046, China
Abstract:Aiming at the shortage of the ant colony algorithm in the solving process of cloud computing task scheduling problem, this paper presents a novel task scheduling method of cloud computing based on improved ant colony algorithm, in order to find the best cloud computing task scheduling scheme. Firstly, this paper analyzes current status of research on task scheduling in the cloud computing, and describes the problem in detail. And then ant colony algorithm is used to solve the problem of cloud computing task scheduling, and the defects of standard ant colony algorithm are improved. Finally the performance of the proposed method is tested on the CloudSim platform. The results show that the improved ant colony algorithm not only can find better scheduling scheme for cloud computing tasks, but also speed up the completion of the cloud computing tasks, which has a certain practical application value.
Keywords:cloud computing technology  task scheduling problem  ant colony optimization algorithm  simulation test
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号