首页 | 本学科首页   官方微博 | 高级检索  
     


Plasma surface interaction in PACVD and PVD systems during TiAlBN nanocomposite hard thin films deposition
Authors:R. Avni  I. Fried  I. Zukerman
Affiliation:a Avni RTD Consulting and Euro-Consultants Ltd., 8 Rimalt, Ramat-Gan 52281, Israel
b NRC-Negev, Department of Chemistry, POBox 9001, Beer Sheva 84190, Israel
c Ben-Gurion University, POBox 653, Beer-Sheva 84105, Israel
Abstract:In a PACVD system, titanium alloys were exposed to inductive radio-frequency (RF) plasmas of H2 + N2 and Ar + BCl3+H2 + N2 gas mixtures for their nitriding and boron nitride respectively. Hard nanocomposite thin films of TiAlN and TiAlBN were formed on Ti-6Al-4V alloys in an inductive RF plasma of Ar + H2 + N2 and Ar + 3.5 vol.% of BCl3 + H2 + N2, respectively. The substrates were grounded, i.e., self-biased, during plasma thin film formation for 30 min each. TiAlBN was deposited by sputtering in a reactive PVD system. A quadrupole mass spectrometer (QMS) sampled the plasma at a constant distance of 0.5 cm from the sample surface in real time. The mass species (m/e) at 0.5 cm were recorded during the deposition process. To separate the particles reaching the substrate surface from those leaving it, the nanocomposite thin films coated samples of Ti alloys were introduced in an RF plasma of Ar + H2 mixture without the presence of N2 and BCl3 and negatively biased up to Vb = − 350 V. The QMS at 0.5 cm measures the etched and sputtered species from the surface of the coated samples. Comparing the QMS results between the grounded samples with the monomers in the RF plasma and the negatively biased voltage samples without monomers in the Ar + H2 plasma the net plasma surface interactions (PSI) were evaluated. The behavior of the coating process of nanocomposite thin films of TiAlN and TiAlBN on the Ti alloy samples is strongly dependent on the plasma surface phenomena.
Keywords:TiAlBN nanocomposites   Hard thin films   Plasma surface interactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号