首页 | 本学科首页   官方微博 | 高级检索  
     


Geometric pattern matching for point sets in the plane under similarity transformations
Authors:Dror Aiger  Klara Kedem
Affiliation:a Department of Computer Science, Ben Gurion University, Be'er Sheva, Israel
b Orbotech LTD, Yavne, Israel
c Computer Science Department, Cornell University, Ithaca, NY, USA
Abstract:We consider the following geometric pattern matching problem: Given two sets of points in the plane, P and Q, and some (arbitrary) δ>0, find a similarity transformation T (translation, rotation and scale) such that h(T(P),Q)<δ, where h(⋅,⋅) is the directional Hausdorff distance with L as the underlying metric; or report that none exists. We are only interested in the decision problem, not in minimizing the Hausdorff distance, since in the real world, where our applications come from, δ is determined by the practical uncertainty in the position of the points (pixels). Similarity transformations have not been dealt with in the context of the Hausdorff distance and we fill the gap here. We present efficient algorithms for this problem imposing a reasonable separation restriction on the points in the set Q. If the L distance between every pair of points in Q is at least 8δ, then the problem can be solved in O(mn2logn) time, where m and n are the numbers of points in P and Q respectively. If the L distance between every pair of points in Q is at least , for some c, 0<c<1, we present a randomized approximate solution with expected runtime O(n2c−4ε−8log4mn), where ε>0 controls the approximation. Our approximation is on the size of the subset, BP, such that h(T(B),Q)<δ and |B|>(1−ε)|P| with high probability.
Keywords:Approximation algorithms  Randomized algorithms  Computational geometry  Geometric pattern matching  Hausdorff distance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号