首页 | 本学科首页   官方微博 | 高级检索  
     


Phase separation to create hydrophilic yet non‐water soluble PLA/PLA‐b‐PEG fibers via electrospinning
Authors:Larissa M. Buttaro  Erin Drufva  Margaret W. Frey
Affiliation:1. Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York;2. Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts
Abstract:In moisture wicking fabrics, fibers with hydrophilic surfaces that are also non‐water soluble are desirable. In poly(lactic acid), PLA, fibers it is expected that the addition of poly(ethylene glycol), PEG, will monotonically increase their wicking rates. In this paper, phase separation was used to create biocompatible, biodegradable, hydrophilic yet non‐water soluble fibers by electrospinning PLA with PEG and PLA‐b‐PEG copolymers. By tuning the thermoelectric parameters of the apparatus, and the chemical properties of the dopes, the amount of PEG in the fibers was improved over prior work; concentration increased by 60% (by weight, wt %) to 16 wt % in the PLA fiber. Instead of the expected increasing wicking rates with PEG concentration, there is a peak at 12 wt %; at greater concentrations, wicking decreases due to PEG crystallization within the PLA (verified via DSC). At 12 wt % PEG from copolymers, the nanofabric's wettability increases to 1300% its original weight. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41030.
Keywords:electrospinning  fibers  phase behavior  surfaces and interfaces
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号