首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible and flame‐retardant S‐SEB‐S triblock copolymer/PPE nano‐alloy
Authors:Yoshifumi Araki  Yukari Hori  Katsumi Suzuki  Hiroshi Shirai  Kiyoo Kato  Hiromu Saito
Affiliation:1. Asahi Kasei Chemicals Corporation, Kawasaki‐city, Kanagawa, Japan;2. Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan
Abstract:We observed that modified polyphenylene ether (PPE) was solubilized in thermoplastic styrenic elastomer (TPS) and that a two‐phase lacy structure formed on nanometer scales when the TPS composition was 67 wt % and modified PPE and polystyrene‐block‐poly(styrene‐co‐ethylene‐co‐butylene)‐block‐polystyrene (S‐SEB‐S triblock copolymer) were blended. However, the molecular weight of the outer PS block segments MoutPS and the content of the outer PS block segments ?outPS were <10,000 g/mol and 20 wt %, respectively. The resulting S‐SEB‐S/modified PPE nano‐alloy exhibited both flexibility and flame retardancy, unlike other materials, where a trade‐off exists between these two properties; that is, the flame retardancy was excellent when the phosphorus additive was present. This combination of properties might be attributed to the two‐phase nanometer‐scale structure consisting of flame‐retardant styrene/PPE domains and a continuous soft, lacy SEB matrix. The results for polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene (S‐EB‐S triblock copolymer)/modified PPE blends were presented for comparison. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40446.
Keywords:structure‐property relations  blends  mechanical properties  flame retardance  nanostructured polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号