首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of two chemical crosslinking methods of poly(vinyl alcohol) hydrogels for injectable nucleus pulposus replacement
Authors:Valerie R Binetti  Garland W Fussell  Anthony M Lowman
Affiliation:1. Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania;2. Depuy Synthes Biomaterials, West Chester, Pennsylvania;3. Rowan University, Glassboro, New Jersey
Abstract:Low back pain caused by intervertebral disc degeneration is one of the most common spinal disorders among patients seeking medical treatment. The most common surgical treatments are spinal fusion and total disc arthroplasty, both of which are very invasive surgical procedures. Nucleus pulposus replacement is an earlier stage intervention for disc degeneration. One of the material classes being studied for this application is hydrogels: a three‐dimensional hydrated network of polymer(s), which mimics the mechanical and physiological properties of the nucleus. Poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and poly(ethylene glycol) (PEG) hydrogels have previously been shown to be great candidate materials for injectable nucleus pulposus replacement, but have experienced issues with swelling and mass retention. The addition of chemical crosslinking to the PVA/PVP/PEG hydrogel system will allow tailoring of the swelling, mechanical, injectability, and mass loss properties of the hydrogel network. Two chemical crosslinking methods were evaluated for the PVA/PVP/PEG hydrogel system by characterizing the hydrogels with compression, swelling, and spectroscopy experiments. The results of these experiments led to the selection of the difunctional crosslinking strategy using PEG functionalized with terminal epoxide group (PEG diglycidyl ether) as the preferred crosslinking method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40843.
Keywords:biomedical applications  crosslinking  irradiation  mechanical properties  swelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号