首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of isotactic polypropylene/high‐density polyethylene/carbon black conductive films with strain‐sensing behavior
Authors:Shaodi Zheng  Shilin Huang  Danqi Ren  Wei Yang  Zhengying Liu  Mingbo Yang
Affiliation:College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
Abstract:Novel conductive films with a unique strain (ε)‐sensing behavior and based on a blend of isotactic polypropylene (iPP), high‐density polyethylene (HDPE), and carbon black (CB) were fabricated by an extrusion casting method. The morphology and ε‐sensing behavior of the films were investigated. Scanning electron microscope images showed that the oriented lamellae with a growing direction perpendicular to the extrusion direction were obtained in the HDPE phase and were accompanied by a cocontinuous structure of the iPP phase and HDPE/CB phase. The conductive percolation threshold (mc) and resistivity–ε behavior of the thin films are affected by the drawing ratio during the process of film preparation. The mc and electrical resistance of the iPP/HDPE/CB composite films increased with the drawing ratio. The gauge factor of the films within the elastic region decreased with increasing drawing ratio. Furthermore, the result of iPP/(HDPE/CB) 40/60 with a high drawing ratio shows that a reversible conductivity was obtained during the cyclic tensile testing (ε = 10%), but an irreversible conductivity makes the film fail during use at the applied ε values of up to 15%. This makes them good piezoresistive candidates for ε‐sensing materials. Moreover, a simple structural model was proposed to describe the reversible and irreversible phenomena in the electrical resistance behavior of the iPP/HDPE/CB films under tensile loading. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40686.
Keywords:composites  extrusion  films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号