首页 | 本学科首页   官方微博 | 高级检索  
     


Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO2 nanofillers
Authors:Yonghui Li  Caihong Chen  Jun Li  Xiuzhi Susan Sun
Affiliation:1. Bio‐materials and Technology Lab, Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas;2. Department of Chemistry, Kansas State University, Manhattan, Kansas;3. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
Abstract:Photoactivity of poly(lactic acid) (PLA) nanocomposites is of great interest for rational design of products for either short‐term/single‐use or long‐term/durable applications. We prepared PLA/TiO2 nanocomposite films through a solution mixing/film casting method. Results showed that photodegradability/photostability of PLA could be well modulated by selecting appropriate TiO2 nanofillers. TiO2 nanoparticles and nanowires were characterized using X‐ray diffraction, UV–Vis–NIR spectrophotometer, and scanning electron microscopy. Changes in color, weight, structure, thermal stability, and phase transitions of PLA and nanocomposite films before and after UV irradiation were evaluated to study photoactivity characteristics. Pure PLA exhibited moderate photodegradability, but the photodegradability and photostability of PLA nanocomposites (PNA) were significantly enhanced by NanoActive (NA) TiO2 nanoparticles and A type TiO2 nanowires, respectively. Pure PLA had a weight loss of 27% after 38 days of UV irradiation. The weight loss of photodegradable (PD) PNA (PNA = PLA with 1% NA TiO2) reached 38%, whereas that of photostable (PS) nanocomposites (P3AW) (P3AW = PLA with 3% A type TiO2 nanowire) was only 5%. PD PLA exhibited characteristic peaks of carboxylic acid OH stretching and C?C double bond after UV irradiation in Fourier‐transform infrared spectra, whereas spectra of PS PLA remained almost the same. Thermal decomposition temperatures, glass transition temperatures, and melting temperatures of PD PLAs decreased dramatically after UV irradiation, but no obvious changes were observed for those of PS PLAs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40241.
Keywords:biopolymers and renewable polymers  differential scanning calorimetry (DSC)  thermal properties  nanoparticles  nanowires and nanocrystals  composites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号