An efficient algorithm for mining temporal high utility itemsets from data streams |
| |
Authors: | Chun-Jung Chu Tyne Liang |
| |
Affiliation: | a Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC b Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC |
| |
Abstract: | Utility of an itemset is considered as the value of this itemset, and utility mining aims at identifying the itemsets with high utilities. The temporal high utility itemsets are the itemsets whose support is larger than a pre-specified threshold in current time window of the data stream. Discovery of temporal high utility itemsets is an important process for mining interesting patterns like association rules from data streams. In this paper, we propose a novel method, namely THUI (Temporal High Utility Itemsets)-Mine, for mining temporal high utility itemsets from data streams efficiently and effectively. To the best of our knowledge, this is the first work on mining temporal high utility itemsets from data streams. The novel contribution of THUI-Mine is that it can effectively identify the temporal high utility itemsets by generating fewer candidate itemsets such that the execution time can be reduced substantially in mining all high utility itemsets in data streams. In this way, the process of discovering all temporal high utility itemsets under all time windows of data streams can be achieved effectively with less memory space and execution time. This meets the critical requirements on time and space efficiency for mining data streams. Through experimental evaluation, THUI-Mine is shown to significantly outperform other existing methods like Two-Phase algorithm under various experimental conditions. |
| |
Keywords: | Utility mining Temporal high utility itemsets Data stream mining Association rules |
本文献已被 ScienceDirect 等数据库收录! |
|