首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel and normal cutting forces in peripheral milling of wood
Authors:J. Palmqvist
Affiliation:(1) Swedish Institute for Wood Technology Research and Department of Mechanical Engineering Assembly Technology, Linköping University, 58183 Linköping, Sweden
Abstract:In this paper, the parallel and normal cutting forces on the tip of the tool are examined when altering a number of parameters in peripheral milling. The parameters studied are rake angle, chip thickness and upward/downward milling. The evaluation of the forces has been performed during cutting of the chip and the variation in the forces has been recorded. In this way, important information can be obtained in order to arrive at cutting data and tool geometries that will reduce surface defects such as torn and raised grain. In the past, very few investigations have been carried out on peripheral milling, probably because of the difficulties of measurement. Nowadays, however, new measuring techniques and equipment make it possible to measure cutting forces even in standard milling machines. In this work, a sensor was placed under the workpiece to measure the forces in three directions at frequencies up to 7000 Hz. To obtain detailed data, a plastic material was used so that the cutting (revolution) speed could be kept at a minimum, thereby maximizing the number of readouts per incision. The results show how the normal force (the force component perpendicular to the workpiece) varies during the cut and how it is dependent on the examined parameters. This force changes from negative to positive during the cut. When altering the machining parameters, the normal force changes in both direction and magnitude. The other force component, the parallel force, also shows a dependence on the parameters. The objective of this research is to find parameters that minimize the normal forces in order to avoid damage to the wood.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号