首页 | 本学科首页   官方微博 | 高级检索  
     


Towards the improvement of thermal efficiency in lignite‐fired power generation: Concerning the utilization of Polish lignite deposits in state‐of‐the‐art IGCC technology
Authors:Yosuke Komatsu  Anna Sciazko  Marcin Zakrzewski  Taro Akiyama  Akira Hashimoto  Naoki Shikazono  Shozo Kaneko  Shinji Kimijima  Janusz S Szmyd  Yoshinori Kobayashi
Affiliation:1. Shibaura Institute of Technology, Graduate School of Engineering and Science, Division of Regional Environment Systems, Saitama‐shi, Saitama, Japan;2. The University of Tokyo, Institute of Industrial Science, Meguro‐ku, Tokyo, Japan;3. AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Fundamental Research in Energy Engineering, Krakow, Poland;4. Shibaura Institute of Technology, College of Systems Engineering and Science, Department of Machinery and Control Systems, Saitama‐shi, Saitama, Japan
Abstract:Integrated coal Gasification Combined Cycle (IGCC) is the most advanced technology for coal‐fired power generation. The two‐stage entrained flow gasification process allows for the use of a wide range of coal, as long as the gasification temperature is above the ash melting point of a used fuel. In this gasification technology, lignite, which often has a low ash melting point, can be preferably utilized. However, ash fluidity is also another importance, because the behaviour of molten slag can diminish a stable ash discharge from a gasifier. As the eligibility of coal ash properties is a considerable factor, water physically and chemically kept in lignite (30 – 60% in mass) attributes to deteriorating gasification efficiency, because it causes significant heat loss and increasing oxygen consumption. Developing a thermal evaporative lignite drying method will be a necessary attempt to apply lignite to the coal gasification process. For those preceded objectives, coal and ash properties and drying characteristics of several grades of Polish lignite, extracted from Belchatow and Turow deposits, have been experimentally investigated in a preliminary study evaluating the applicability and consideration for its utilization in state‐of‐the‐art clean coal technology, IGCC. This paper particularly discusses the eligibility of Polish lignite from the perspective of the fusibility and fluidity of ash melts and the fundamental drying kinetics of lignite in superheated steam in the light of water removal. The viscosity of ash melts is measured at high temperature up to 1700 °C. In the drying tests, the significant influence of structural issues, because of the provenance and origin of lignite on the drying characteristics, was found by applying the method of sensitivity analysis of physical propensity. This paper concludes that the investigated Polish lignite has characteristics favourable for utilization in IGCC technology, once the precautions related to its high moisture have been carefully addressed. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:lignite  polish deposits  gasification  ash fusibility  molten slag  lignite upgrading  lignite drying  superheated steam drying
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号