首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机刀具磨损预测模型及MATLAB仿真
引用本文:叶蔚,王时龙,雷松. 支持向量机刀具磨损预测模型及MATLAB仿真[J]. 工具技术, 2009, 43(10): 42-45
作者姓名:叶蔚  王时龙  雷松
作者单位:重庆大学机械传动国家重点实验室,400044,重庆市;重庆大学
摘    要:针对刀具使用时加工参数多变的实际情况,提出使用最小二乘支持向量机(LS—SVM)建立模型并对刀具磨损进行预测:首先引入最小二乘支持向量机建立刀具磨损模型,然后针对具体实验数据,采用交叉验证的办法,选取优化的核参数。实验和仿真结果表明:该模型可以有效地学习刀具磨损中的非线性关系,刀具磨损的预测精度较高。因此该模型可以用作对实际加工中的刀具磨损进行有效预测,并为切削参数的实际选择提供依据。

关 键 词:刀具磨损  向量机模型  MATLAB仿真

Predicting Model of Cutting Tool Wear Based on Least Squares Support Vector Machine and MATLAB Simulation
Ye Wei,Wang Shilong,Lei Song. Predicting Model of Cutting Tool Wear Based on Least Squares Support Vector Machine and MATLAB Simulation[J]. Tool Engineering(The Magazine for Cutting & Measuring Engineering), 2009, 43(10): 42-45
Authors:Ye Wei  Wang Shilong  Lei Song
Affiliation:Ye Wei,Wang Shilong,Lei Song
Abstract:With the variable parameter appearing in the using of tool,the model built by least squares support vector machines(LS-SVM)method is provided to predicting tool wear.Firstly,LS-SVM was introduced to model the wearing of tool.Aiming at the specific sample,the method of cross validation is used to choose the proper kernel function parameters.Results of simulations and experiments showed that the LS-SVM model based on radial basis function kernel(RBF) could effectively learn the non-linear relationship in tool...
Keywords:cutting tool wear  SVM model  MATLAB simulation  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号