首页 | 本学科首页   官方微博 | 高级检索  
     


The random projection method in goodness of fit for functional data
Authors:J.A. Cuesta-Albertos  E. del Barrio  R. Fraiman
Affiliation:a Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. los Castros s.n., 39005 Santander, Spain
b Departamento de Estadística e Investigación Operativa, Universidad de Valladolid, Spain
c Departamento de Matemáticas, Universidad de San Andrés, Argentina and Centro de Matemática, Universidad de la República, Uruguay
Abstract:The possibility of considering random projections to identify probability distributions belonging to parametric families is explored. The results are based on considerations involving invariance properties of the family of distributions as well as on the random way of choosing the projections. In particular, it is shown that if a one-dimensional (suitably) randomly chosen projection is Gaussian, then the distribution is Gaussian. In order to show the applicability of the methodology some goodness-of-fit tests based on these ideas are designed. These tests are computationally feasible through the bootstrap setup, even in the functional framework. Simulations providing power comparisons of these projections-based tests with other available tests of normality, as well as to test the Black-Scholes model for a stochastic process are presented.
Keywords:Random projections   Goodness-of-fit tests   Families of distributions   Gaussian distributions   Black-Scholes   Stochastic processes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号