首页 | 本学科首页   官方微博 | 高级检索  
     


pH-independent fluorescent chemosensor for highly selective lithium ion sensing
Authors:Citterio Daniel  Takeda Junichiro  Kosugi Masaki  Hisamoto Hideaki  Sasaki Shin-Ichi  Komatsu Hirokazu  Suzuki Koji
Affiliation:Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. citteda@educ.cc.keio.ac.jp
Abstract:Since lithium salts are used as pharmaceutically active compounds against manic-depressive psychosis, there is a demand to monitor the lithium concentration in blood in the narrow range of 0.6-1.2 mM effectively and safely. Here we report on an optical sensor approach for the determination of Li+, based on the design and synthesis of a novel lithium fluoroionophore KLI-1 and its polymer immobilizable derivative KLI-2, and the application to an optode. The novel lithium fluoroionophores rely on a tetramethyl "blocking subunit" bearing 14-crown-4 as a Li+-selective binding site and 4-methylcoumarin as a fluorophore, intramolecularly connected to show ICT-type wavelength shift for ratiometric fluorescence measurements. The fluoroionophores showed high selectivity for Li+ with binding-induced blue shift in the fluorescence spectra, no response to major biological interfering cations (K+, Ca2+, Mg2+), a selectivity of log kLi+,Na+ = -2.4 over Na+ in solution, and no response to pH in the range of pH 3-10. A hydrophilic optode membrane with KLI-2 immobilized also showed good selectivity for Li+, pH independence in the physiological range (pH 6-8), and fully reversible signal changes. KLI-1 and KLI-2 are excellent Li+ fluorescent chemosensors that can be applied to quantitative measurements of lithium in clinical samples, although possible interference from Na+ has to be considered at the lower therapeutic level of Li+.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号