首页 | 本学科首页   官方微博 | 高级检索  
     


A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion
Authors:Joachim Weickert  Christoph Schnörr
Affiliation:(1) Computer Vision, Graphics, and Pattern Recognition Group, Department of Mathematics and Computer Science, University of Mannheim, 68131 Mannheim, Germany
Abstract:Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness constancy assumption holds, and a regularizer that encourages global or piecewise smoothness of the flow field. In this paper we present a systematic classification of rotation invariant convex regularizers by exploring their connection to diffusion filters for multichannel images. This taxonomy provides a unifying framework for data-driven and flow-driven, isotropic and anisotropic, as well as spatial and spatio-temporal regularizers. While some of these techniques are classic methods from the literature, others are derived here for the first time. We prove that all these methods are well-posed: they posses a unique solution that depends in a continuous way on the initial data. An interesting structural relation between isotropic and anisotropic flow-driven regularizers is identified, and a design criterion is proposed for constructing anisotropic flow-driven regularizers in a simple and direct way from isotropic ones. Its use is illustrated by several examples.
Keywords:optic flow  differential methods  regularization  diffusion filtering  well-posedness
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号