首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes
Authors:K.I. Tserpes  P. Papanikos
Affiliation:

aLaboratory of Structural Mechanics, Department of Rural and Surveying Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou St., 15780 Athens, Greece

bDepartment of Product and Systems Design Engineering, University of the Aegean, Ermoupolis, Syros 84100, Greece

Abstract:The effectiveness of carbon nanotubes as reinforcements in the next generation of composites is designated by their mechanical behavior as standalone units. One of the most commonly present topological defects, whose effect on the mechanical behavior of carbon nanotubes needs to be clarified, is the Stone–Wales (SW) defect. In this paper, the effect of SW defect on the tensile behavior and fracture of armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) was studied using an atomistic-based progressive fracture model. The model uses the finite element method for analyzing the structure of SWCNTs and the modified Morse interatomic potential for describing the nonlinear force-field of the C–C bonds. In all cases examined, the SW defect serves as nucleation site for fracture. Its effect on the tensile behavior of the SWCNTs depends solely on nanotube chirality. In armchair SWCNTs, contrary to zigzag ones, a significant reduction in failure stress and failure strain was predicted; ranging from 18% to 25% and from 30% to 41%, respectively. In chiral SWCNTs, the effect of the defect is between those of the armchair and zigzag SWCNTs, depending on chiral angle. The stiffness of the nanotubes was not affected. The nanotube size was found to play a minimal role in the tensile behavior of SW-defected SWCNTs; only in cases of very small nanotube diameters, where the fraction of defect area to the nanotube area is high, was a larger decrease in the failure stress predicted.
Keywords:Carbon nanotubes   Finite element analysis   Interatomic potential   Progressive fracture analysis   Stone–Wales defect
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号