首页 | 本学科首页   官方微博 | 高级检索  
     


Tool path generation and modification for constant cutting forces in direction parallel milling
Authors:Hyun-Chul Kim
Affiliation:1. High Safety Vehicle Core Technology Research Center, Department of Mechanical and Automotive Engineering, Inje University, 621-749, Gimhae, South Korea
Abstract:This paper presents an optimized path generation algorithm for direction parallel milling, which is commonly used in the roughing and finishing stages. First, a geometrically efficient tool path generation algorithm using an intersection points graph is introduced. Second, the generated tool path is modified as an optimized tool path that maintains a constant material removal rate to achieve a constant cutting force and avoid chatter vibration, and the results are verified. Additional tool path segments are appended to the basic tool path through a pixel-based simulation technique. The algorithm is implemented for two-dimensional contiguous end milling operations with flat end mills, and cutting tests are conducted by measuring the spindle current, which reflects the changing machining situations, to verify the performance of the proposed method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号