首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical models of composite material drilling
Authors:Pierre Rahm??  Yann Landon  Fr??d??ric Lachaud  Robert Piquet  Pierre Lagarrigue
Affiliation:1. Universit?? de Toulouse; INSA, UPS, Mines Albi, ISAE; ICA (Institut Cl??ment Ader), Bat 3R1, 118 Route de Narbonne, 31062, Toulouse Cedex, France
Abstract:Drilling of composite material structures is widely used for aeronautical assemblies. When drilling, damage to the composite laminate is directly related to the cutter geometry and the cutting conditions. Delamination of the composite materials at the hole exit as directly related to the axial force (F Z) of the cutter is considered to be the major such defect. To address this issue, an orthotropic analytical model is developed in order to calculate the critical force of delamination during drilling and a number of hypotheses for loading are proposed. This critical axial load is related to the delamination conditions (propagation of cracks in the last layers) and the mechanical characteristics of the composite material machined. A numerical model is also drawn up to allow for numerical validation of the analytical approach. A comparison between these analytical and numerical modellings and experimental results from quasi-static punch tests led to the choice of the loading hypothesis closest to the experimental conditions. The selection of corresponding load permits to model the drilling critical thrust force on delamination and then to optimise the cutting conditions. The dimensions and geometrical shape of the cutter are of considerable importance when it comes to choosing this load. The present article focuses on the case of the twist drill, which is commonly used to drill thick plates. However, this work can be adapted to different cutter geometries.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号