首页 | 本学科首页   官方微博 | 高级检索  
     

利用空间信息的核模糊C均值聚类算法
引用本文:王丹丹,李彬,陈武凡. 利用空间信息的核模糊C均值聚类算法[J]. 计算机工程与应用, 2007, 43(33): 82-83
作者姓名:王丹丹  李彬  陈武凡
作者单位:南方医科大学,生物医学工程学院,广州,510515;南方医科大学,生物医学工程学院,广州,510515;南方医科大学,生物医学工程学院,广州,510515
基金项目:国家重点基础研究发展计划(973计划)
摘    要:模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。

关 键 词:图像分割  核方法  模糊C均值聚类算法  图像的空间信息
文章编号:1002-8331(2007)33-0082-02
修稿时间:2007-07-01

Kernel-based fuzzy C-Means clustering algorithm using spatial information
WANG Dan-dan,LI Bin,CHEN Wu-fan. Kernel-based fuzzy C-Means clustering algorithm using spatial information[J]. Computer Engineering and Applications, 2007, 43(33): 82-83
Authors:WANG Dan-dan  LI Bin  CHEN Wu-fan
Affiliation:School of Biomedical Engineering,Southern Medical University,Guangzhou 510515,China
Abstract:Fuzzy clustering techniques,especially Fuzzy C-Means(FCM) clustering algorithm is a popular model widely used in the segmentation of images.However,as the conventional FCM doesn't optimize data in feature space and doesn't involve any spatial information,it is sensitive to noise.In the paper,we presented a modified kernel-based FCM clustering algorithm for image segmentation.The algorithm by using kernel method the original euclidean distance in the FCM is replaced by a kernel-induced distance.Then,a spatial penalty term is added to the objective function to compensate the influence of the neighboring pixels on the center pixel.The new algorithm is applied to both synthetic images and simulation Magnetic Resonance(MR) images and is shown to be more robust to noise and outlier than the other FCM-based methods.
Keywords:image segmentation  kernel method  Fuzzy C-Means algorithm(FCM)  spatial information of image
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号