Reinforcement layout and sizing optimization of composite submarine sail structures |
| |
Authors: | M. Rais-Rohani J. Lokits |
| |
Affiliation: | (1) Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS 39762, USA |
| |
Abstract: | A topology optimization approach that makes use of nonlinear design variable-to-sizing relationship is presented. A finite element (FE) model is used to describe the loaded structure, but unlike the microstructure approach, the decision is whether an element in the continuum should have maximum or minimum cross-sectional dimension while its material density and moduli are held constant. This approach is applied to reinforcement layout optimization of a very large and geometrically complex Composite Advanced Sail (CAS) structure under an asymmetric wave slap loading condition. A high-complexity model in the form of multilayered shell and a low-complexity model in the form of stiffened shell are developed for the layout optimization of the CAS and solved for minimum strain energy. The effects of constraints such as buckling instability on optimal placement of internal stiffeners are also explored. Based on the results of the layout optimization, a new FE model of the CAS is developed and optimized for minimum weight. Depending upon the degree of variability in skin thickness, the results show a weight saving of up to 19% over the original model. |
| |
Keywords: | Reinforcement layout optimization Topology optimization Sizing optimization Optimization of composite structures Buckling constraints Marine structures |
本文献已被 SpringerLink 等数据库收录! |
|