首页 | 本学科首页   官方微博 | 高级检索  
     


Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy
Authors:Y Han  R H Linton  S S Nielsen  P E Nelson
Affiliation:Department of Food Science, Purdue University, West Lafayette, Indiana, 47907-1160, USA
Abstract:Cells of Escherichia coli O157:H7 on uninjured and injured surfaces of green pepper were inactivated by 0·15–1·2 mg l−1ClO2gas treatments. A membrane-surface-plating method was used for resuscitation and enumeration of E. coli O157:H7 treated with ClO2. The location and viability ofE. coli O157:H7 on uninjured and injured green pepper surfaces after ClO2gas treatments were visualized using confocal laser scanning microscopy (CLSM). Live and dead cells of E. coli O157:H7 on pepper surfaces were labeled with a fluorescein isothiocyanate-labeled antibody and propidium iodide, respectively. A 7·27 log reduction of E. coli O157:H7 on uninjured green pepper surfaces was obtained with a 0·60 mg l−1ClO2gas treatment for 30 min at 20°C under 90–95% relative humidity. For injured surfaces, a 6·45 log reduction was achieved with a 1·2 mg l−1ClO2gas treatment. Each ClO2gas treatment (0·15–1·2 mg l−1ClO2) for inoculated bacteria on uninjured surfaces showed significantly more reductions (1·23–4·24 log) than for those on injured surfaces (P<0·05). The microphotographs of CLSM showed that bacteria preferentially attached to injured surfaces and those bacteria could be protected from bacterial reduction by the injuries. This study indicates that ClO2gas treatment can be a potential effective method of pathogen reduction for fresh fruits and vegetables.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号