首页 | 本学科首页   官方微博 | 高级检索  
     


Conductivity of a single DNA duplex bridging a carbon nanotube gap
Authors:Guo Xuefeng  Gorodetsky Alon A  Hone James  Barton Jacqueline K  Nuckolls Colin
Affiliation:Department of Chemistry, Columbia University, New York 10027, USA.
Abstract:We describe a general method to integrate DNA strands between single-walled carbon nanotube electrodes and to measure their electrical properties. We modified DNA sequences with amines on either the 5' terminus or both the 3' and 5' termini and coupled these to the single-walled carbon nanotube electrodes through amide linkages, enabling the electrical properties of complementary and mismatched strands to be measured. Well-matched duplex DNA in the gap between the electrodes exhibits a resistance on the order of 1 M(Omega). A single GT or CA mismatch in a DNA 15-mer increases the resistance of the duplex approximately 300-fold relative to a well-matched one. Certain DNA sequences oriented within this gap are substrates for Alu I, a blunt end restriction enzyme. This enzyme cuts the DNA and eliminates the conductive path, supporting the supposition that the DNA is in its native conformation when bridging the ends of the single-walled carbon nanotubes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号