首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of the human ferrochelatase promoter in transgenic mice
Authors:ST Magness  A Tugores  ES Diala  DA Brenner
Affiliation:University of North Carolina at Chapel Hill, Curriculum in Genetics and Molecular Biology, the Departments of Medicine, and Biochemistry and Biophysics, Chapel Hill, NC, USA.
Abstract:Ferrochelatase catalyzes the chelation of ferrous iron and protoporphyrin to form heme. It is expressed as a housekeeping gene in all cells, but is upregulated during erythropoiesis. Ferrochelatase activity is deficient in the inherited disease protoporphyria as a result of heterogeneous mutations. Although human ferrochelatase is transcribed from a single promoter in both nonerythroid and erythroid cells, previous studies using transient transfection assays failed to demonstrate erythroid-specific increased expression from 4.0 kb of the human ferrochelatase promoter containing the erythroid cis-elements, GATA and NF-E2. The present study analyzes the in vivo regulation of the ferrochelatase gene to provide insights into the mechanism of its erythroid-specific enhancement. Transgenic (TG) mouse lines were generated in which the luciferase reporter gene was driven by either a 150-bp ferrochelatase minimal promoter (-0.15 TG) or by a 4.0 kb extended 5' upstream region (-4.0 TG). Expression of the -4.0 TG transgene was generally consistent with the endogenous gene during embryonic development and in nonerythroid and erythroid tissues as demonstrated by Northern blotting and mRNA in situ hybridization. The -4.0 TG was expressed at a higher level than the -0.15 TG in nonerythroid and erythroid tissues, including during extramedullary erythropoiesis induced by n-acetylphenylhydrazine injection. The enhanced erythroid expression of the -4.0 TG correlates with the appearance of a DNase I hypersensitive site in the 5' flanking region of the transgene. Therefore, in the context of chromosomal integration, the 5' flanking region of the ferrochelatase gene is necessary and sufficient to confer high levels of transgene expression in erythroid tissue.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号