首页 | 本学科首页   官方微博 | 高级检索  
     

结合速度控制的时空图网络行人轨迹预测模型
引用本文:王海峰,桑海峰,王金玉,陈旺兴. 结合速度控制的时空图网络行人轨迹预测模型[J]. 电子测量与仪器学报, 2022, 36(5): 146-154
作者姓名:王海峰  桑海峰  王金玉  陈旺兴
作者单位:沈阳工业大学信息科学与工程学院 沈阳 110870
基金项目:国家自然科学基金(62173078);;辽宁省教育厅科研项目(LJGD2020006)资助;
摘    要:行人轨迹预测中最重要的任务是建立行人轨迹交互模型,针对在模型中缺乏关于时间和速度等信息的建模,提出了一种结合速度控制的时空图网络算法来建立行人交互模型并对轨迹进行预测.整体模型采用条件生成对抗网络架构,其中采用速度预测模块预测行人未来速度并作为条件生成对抗网络的控制条件,显式地将速度信息引入行人轨迹预测,避免较大偏差速度对轨迹的影响。在生成器中设计了基于图卷积注意力机制的时空信息融合模块,在提取行人轨迹序列运动特征并关注其空间上相互作用关系的同时,显式地编码行人序列的时间相关性。最后,将结合时空信息和速度信息的轨迹交互特征解码,完成轨迹的预测。此外,考虑到现有评价方法的不足,采用平均碰撞次数作为轨迹合理性的评判。在公开数据集ETH和UCY上进行验证,实验结果表明,该文所提出的算法能更好地完成行人轨迹预测,平均位移误差为0.40 m和最终位移误差为0.79 m。

关 键 词:行人轨迹预测  生成对抗网络  速度控制  时空图网络  平均碰撞次数

Spatial-temporal graph network with speed controlpedestrian trajectory prediction model
Wang Haifeng,Sang Haifeng,Wang Jinyu,Chen Wangxing. Spatial-temporal graph network with speed controlpedestrian trajectory prediction model[J]. Journal of Electronic Measurement and Instrument, 2022, 36(5): 146-154
Authors:Wang Haifeng  Sang Haifeng  Wang Jinyu  Chen Wangxing
Affiliation:1.The School of Information Science and Engineering, Shenyang University of Technology
Abstract:The most important task in pedestrian trajectory prediction is to establish a pedestrian trajectory interaction model. Aiming atthe lack of semantic information about time and speed in the model, a spatial-temporal graph network algorithm combined with speedcontrol is proposed to establish pedestrian interaction model and predict trajectory. The overall model adopts the conditional generativeadversarial networks architecture, in which the speed prediction module is used to predict the future speed of pedestrians, and the controlcondition of the conditional generative adversarial networks. The speed information is explicitly introduced into the pedestrian trajectoryprediction to avoid the influence of large deviation speed on the trajectory. A spatial-temporal information fusion module is designed inthe generator. While extracting the motion features of pedestrian trajectory sequence and paying attention to its spatial interaction, itexplicitly encodes the temporal correlation of pedestrian sequence. Finally, the trajectory interactive features combined with space-timeinformation and speed information are decoded to complete the trajectory prediction. In addition, considering the shortcomings of theexisting evaluation methods, the average collision times is used as the evaluation of trajectory rationality. The model is verified on thepublic datasets ETH and UCY. The experimental results show that the proposed algorithm can better complete the pedestrian trajectoryprediction, with an average displacement error of 0. 40 m and a final displacement error of 0. 79 m.
Keywords:pedestrian trajectory prediction   generative adversarial network   speed control   spatial-temporal graph network   averagecollision times
本文献已被 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号