首页 | 本学科首页   官方微博 | 高级检索  
     

基于GRU神经网络的脉搏波波形预测方法研究
引用本文:朱凌建,陈剑虹,王裕鑫,郑 铱,王 森,荀子涵. 基于GRU神经网络的脉搏波波形预测方法研究[J]. 电子测量与仪器学报, 2022, 36(5): 242-248
作者姓名:朱凌建  陈剑虹  王裕鑫  郑 铱  王 森  荀子涵
作者单位:西安理工大学机械与精密仪器工程学院 西安 710048
基金项目:陕西省重点研发计划(2020ZDLGY10-04)项目资助;
摘    要:随着生活水平的提高,人们对健康的关注度越来越高,尤其是适应快节奏生活的手环等便携式生理监测设备,备受人们青睐。光电容积脉搏波描记法(PPG)作为一种无创人体脉搏采集手段,被广泛应用于此类设备中。人体脉搏中包含很多生理信息,如血压、血糖、动脉硬化等,为了对这些信息进行提取和分析,目前主要采用机器学习的方法,通过提取脉搏波中的特征点计算特征参数进而建立生理参数模型。但此类方法需要大量且长期的脉搏数据,用于提高生理参数模型的精度,而长期的数据采集受环境限制较大且与便携式生理监测设备设计理念冲突,并且对脉搏波预测的研究存在空白。针对此问题,本文使用Colaboratory建立GRU神经网络模型与LSTM网络模型分别对脉搏波数据进行预测,并对影响模型性能的主要参数进行对比调参。而由自动化机器学习工具AutoML_Alex针对脉搏波数据分析并择优建立的LightGBM网络可以作为具有参考价值的基线模型。通过以上3个模型针对从不同个体采集到的大量脉搏波数据进行建模,对比其平均绝对百分比误差MAPE,LSTM为0.879%,单层GRU为0.852%,LightGBM为0.842%,4层GRU模型为0....

关 键 词:GRU  光电容积脉搏波  脉搏波预测  生理参数监测  数据支持

Research on prediction method of pulse wave waveformbased on GRU neural network
Zhu Lingjian,Chen Jianhong,Wang Yuxin,Zheng Yi,Wang Sen,Xun Zihan. Research on prediction method of pulse wave waveformbased on GRU neural network[J]. Journal of Electronic Measurement and Instrument, 2022, 36(5): 242-248
Authors:Zhu Lingjian  Chen Jianhong  Wang Yuxin  Zheng Yi  Wang Sen  Xun Zihan
Abstract:With the improvement of living standards, people are paying more and more attention to health. In particular, the portablephysiological monitoring device such as smart wristband that adapts to fast-paced life is favored by people. Photoplethysmography(PPG), as a non-invasive human pulse collection method, is widely used in such device. The human pulse contains a lot ofphysiological information. In order to extract and analyze this information, the method of machine learning is generally used to establisha mathematical model. However, such methods require a large amount of long-term pulse data to improve the accuracy of physiologicalparameter models. In response to the problem, this article uses Colaboratory to establish a GRU neural network model and together withLSTM to predict the pulse wave data and adjust the main parameters that affect the performance of the model. The automated machinelearning tool AutoML_Alex analyzes the pulse wave data and establishes the LightGBM network based on the best ones, which can beused as a baseline model with reference value. Use large amounts of pulse wave data collected from different individuals to build threedifferent models, compare with MAPE, LSTM is 0. 879%, single-layer GRU is 0. 852%, LightGBM is 0. 842%, and four-layer GRUmodel is 0. 828%, and apply different models to different individual predictions. It is found that the stability of the single layer in theGRU model is better in the application of different individuals. The results show that we can establish a GRU network model based onshort-term pulse wave data of different individuals, predict long-term pulse wave data, and then monitor the human body''s arteriosclerosisand other physiological conditions, while providing technical and data support for portable physiological monitoring equipment.
Keywords:GRU   photoplethysmography   pulse wave prediction   physiological parameter monitoring   data support
本文献已被 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号