首页 | 本学科首页   官方微博 | 高级检索  
     

基于图模型与加权损失策略的视频行人重识别研究
引用本文:徐志晨,王洪元,齐鹏宇,欣子豪. 基于图模型与加权损失策略的视频行人重识别研究[J]. 计算机应用研究, 2022, 39(2): 598-603
作者姓名:徐志晨  王洪元  齐鹏宇  欣子豪
作者单位:常州大学计算机与人工智能学院阿里云大数据学院
基金项目:国家自然科学基金资助项目(61976028)。
摘    要:针对监控视频中行人外观、姿态相似等现象导致的视频行人重识别准确率低的问题进行了研究,提出了一种基于图模型的视频行人重识别方法,有效利用了视频中的时序信息,实现跨帧及帧内区域的信息交互。具体来说,利用跨帧分块区域间的关联信息建立区域节点间的固有关系,并进行特征传播迭代更新区域信息。另一方面,在度量学习过程中,提出了一种加权损失函数策略,这个方法将先前挖掘策略中的二进制分配法(即丢弃或保留该样本)优化为连续分数分配法,解决了可用样本未被有效利用的问题。将模型在MARS和DukeMTMC-VideoReID两个数据集上进行了评估,实验结果证实了提出方法的有效性。

关 键 词:视频行人重识别  深度学习  图模型  加权损失策略  注意力机制
收稿时间:2021-06-11
修稿时间:2022-01-12

Video-based person re-identification based on graph model and weighted loss strategy
Xu Zhichen,Wang Hongyuan,Qi Pengyu and Xin Zihao. Video-based person re-identification based on graph model and weighted loss strategy[J]. Application Research of Computers, 2022, 39(2): 598-603
Authors:Xu Zhichen  Wang Hongyuan  Qi Pengyu  Xin Zihao
Affiliation:(Aliyun School of Big Data,School of Computer Science&Artificial Intelligence,Changzhou University,Changzhou Jiangsu 213164,China)
Abstract:Aiming at the problem of low person re-identification accuracy caused by similar appearance and posture of person in surveillance videos, this paper proposed a video-based person re-identification method based on a graph model, which effectively utilized the time sequence information in the video to realize the information interaction across frames and intra-frame regions. Specifically, it used the correlation information between the cross-frame block regions to establish the inherent relationship between the regional nodes, and iteratively updated the regional information through feature propagation. On the other hand, in the metric learning process, it proposed a weighted loss function strategy, which optimized the binary allocation method(that is, discarding or retaining the sample) in the previous mining strategy into a continuous score allocation method, which solved the problem that the available samples were not used efficiently. Finally, it evaluated the model on MARS and DukeMTMC-VideoReID datasets, and the experimental results confirm the effectiveness of their proposed method.
Keywords:video-based person re-identification  deep learning  graph model  weighted loss strategy  attention mechanism
本文献已被 维普 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号