首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒计算和双尺度相似性的负荷曲线集成聚类算法
引用本文:孙园,李秋雨,黄冬梅,孙玉芹,胡安铎,孙锦中. 基于粒计算和双尺度相似性的负荷曲线集成聚类算法[J]. 电力建设, 2022, 43(5): 117-126. DOI: 10.12204/j.issn.1000-7229.2022.05.013
作者姓名:孙园  李秋雨  黄冬梅  孙玉芹  胡安铎  孙锦中
作者单位:1.上海电力大学数理学院,上海市 2013062.上海电力大学电子与信息工程学院,上海市 201306
基金项目:国家自然科学基金项目(11871377,12071274);
摘    要:电力负荷曲线聚类通常依靠负荷形态差异和负荷数值差异对负荷曲线进行分类.提出了一种基于粒计算和双尺度相似性的集成聚类算法,采用以欧氏距离和皮尔森相关系数作为相似性度量的K-means算法生成基聚类,再通过粒度距离度量基聚类间的相似性,从而选择部分基聚类参与集成,最后生成相似度矩阵并采用层次聚类获得最终聚类结果.算例结果表...

关 键 词:负荷聚类  粒计算  双尺度相似性  相似度矩阵  集成算法
收稿时间:2021-07-22

Clustering Ensemble Model Based on Granular Computing and Dual-Scale Similarity
SUN Yuan,LI Qiuyu,HUANG Dongmei,SUN Yuqin,HU Anduo,SUN Jinzhong. Clustering Ensemble Model Based on Granular Computing and Dual-Scale Similarity[J]. Electric Power Construction, 2022, 43(5): 117-126. DOI: 10.12204/j.issn.1000-7229.2022.05.013
Authors:SUN Yuan  LI Qiuyu  HUANG Dongmei  SUN Yuqin  HU Anduo  SUN Jinzhong
Affiliation:1. College of Mathematics and Physics, Shanghai University of Electric Power,Shanghai 201306,China2. College of Electronic and Information Engineering, Shanghai University of Electric Power,Shanghai 201306, China
Abstract:Power load profile clustering usually classifies load profiles according to shape difference and numerical difference of the curves. In this paper, an ensemble clustering algorithm based on granular computing and dual-scale similarity is proposed. The K-means algorithm, which takes Euclidean distance and Pearson correlation coefficient as similarity measures, is used to generate base clustering. Then the part of base clustering is selected to participate in the ensemble algorithm through granular computing. Finally, the similarity matrix is generated and the hierarchical clustering is used to obtain the final clustering. The result of the experiment shows that, the proposed algorithm can overcome the limitation that the traditional load profile clustering can only measure the load similarity from the value or shape, and significantly improves the quality of power load profile clustering.
Keywords:load profile classification   granular computing   dual-scale similarity   similarity matrix   clustering ensemble algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《电力建设》浏览原始摘要信息
点击此处可从《电力建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号