首页 | 本学科首页   官方微博 | 高级检索  
     

基于潜在特征选择性集成建模的二噁英排放浓度软测量
引用本文:汤健, 乔俊飞, 郭子豪. 基于潜在特征选择性集成建模的二噁英排放浓度软测量. 自动化学报, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254
作者姓名:汤健  乔俊飞  郭子豪
作者单位:1.北京工业大学信息学部 北京 100124;;2.计算智能与智能系统北京市重点实验室 北京 100124
基金项目:国家自然科学基金(62073006,62021003);北京市自然科学基金(4212032,4192009);科学技术部国家重点研发计划(2018YFC1900800-5);矿冶过程自动控制技术国家(北京市)重点实验室(BGRIMM-KZSKL-2020-02)资助。
摘    要:二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避现象”的主要原因之一. 工业现场多采用离线化验手段检测DXN浓度, 难以满足污染物减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流程系统过程变量的潜在特征, 并依据预设贡献率阈值进行特征初选; 接着, 采用互信息(Mutual information, MI)度量初选特征与DXN间的相关性, 并自适应确定再选的上下限及阈值; 最后, 采用具有超参数自适应选择机制的最小二乘−支持向量机(Least squares — support vector machine, LS-SVM)算法建立多源特征的候选子模型, 基于分支定界(Branch and bound, BB)优化和预测误差信息熵加权算法进行集成子模型的优化选择和加权组合, 进而得到软测量模型. 基于某MSWI焚烧厂DXN检测数据仿真验证了所提方法的有效性.

关 键 词:城市固废焚烧   二噁英   多源潜在特征   最小二乘−支持向量机   选择性集成建模
收稿时间:2019-03-27

Dioxin Emission Concentration Soft Measurement Based on Multi-source Latent Feature Selective Ensemble Modeling for Municipal Solid Waste Incineration Process
Tang Jian, Qiao Jun-Fei, Guo Zi-Hao. Dioxin emission concentration soft measurement based on multi-source latent feature selective ensemble modeling for municipal solid waste incineration process. Acta Automatica Sinica, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254
Authors:TANG Jian  QIAO Jun-Fei  GUO Zi-Hao
Affiliation:1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124;;2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124
Abstract:One of the main reasons leading to “not in my backyard (NIMBY)” of municipal solid waste incineration (MSWI) plant construction is dioxin (DXN) emission from such process, which is a highly toxic substance to the ecological environment. In practical industrial process, the DXN emission concentration is detected by off-line. It is difficult to meet the requirements of optimal control. Aim at the above problem, a new DXN emission concentration soft measurement approach based on multi-source latent feature selective ensemble (SEN) modeling is proposed. Firstly, MSWI process is divided into different subsystems according to industrial processes. Principal component analysis (PCA) was used to extract their latent features. Primary selection of these features is made based on empirical pre-set threshold of contribution rate. Then, mutual information (MI) is used to measure the correlation between these primary selected features and DXN. The upper and lower limits and thresholds for re-selected feature are adaptively determined. Finally, based on the re-selected feature, the least squares-support vector machine (LS-SVM) algorithm with hyper-parameter adaptive selection mechanism is used to construct sub-models. A strategy based on branch and bound (BB) and prediction error information entropy weighting algorithm is used to select sub-model and calculate the weight coefficient. Thus, an SEN soft sensing model is obtained. The proposed method is verified by using DXN detection data of MSWI process in Beijing.
Keywords:Municipal solid waste incineration(MSWI)  dioxin(DXN)  multi-source latent feature  least squaressupport vector machine(LS-SVM)  selective ensemble(SEN)modeling
本文献已被 维普 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号