摘 要: | 针对点云在噪声、遮挡及相似特征多个干扰条件下容易产生错误配准的问题,提出一种基于多特征的关键点提取算法和自适应尺度的融合特征的点云配准方法。在关键点提取时,同时计算多个特征,使关键点更具描述性和鲁棒性。特征描述时,在自适应尺度的基础上使用FPFH和RoPs特征两种特征分别进行初始配准和错误点对剔除,最终各自得到多个相似的转换矩阵。完成上述求解后,将两者得到的矩阵组成集合进行聚类并对矩阵数最多的类取平均值处理作为最终的结果以完成特征的融合。实验研究表明,在忽略极少数无法具体化的错误配准点的情况下,真实场景下所提算法的RMSE、ATI和ERR分别为0.46 mm, 1和0.37;使用数据集测试得到的正确率为99.3%,均表明该算法的精度和鲁棒性较高。
|