首页 | 本学科首页   官方微博 | 高级检索  
     


A Programmable 0.8-V 10-bit 60-MS/s 19.2-mW 0.13-$mu$ m CMOS ADC Operating Down to 0.5 V
Authors:Hee-Cheol Choi Young-Ju Kim Si-Wook Yoo Sun-Young Hwang Seung-Hoon Lee
Affiliation:Sogang Univ., Seoul;
Abstract:This work describes a programmable 10- to 100-MS/s, low-power 10-bit two-step pipeline analog-digital converter (ADC) operating at a power supply from 0.5- to 1.2-V. MOS transistors with a low-threshold voltage are employed partially in the input sampling switches and differential pair of the SHA and MDAC for a proper signal swing margin at a 0.5-V supply. The integrated adjustable current reference optimizes the static and dynamic performance of amplifiers at 10-bit accuracy with a wide range of supply voltages. A signal-isolated layout improves the capacitor mismatch of the multiplying digital-to-analog converter, while a switched- bias power-reduction technique reduces the power dissipation of comparators in the flash ADCs. The prototype ADC in a 0.13-mum CMOS process demonstrates the measured differential nonlin- earity and integral nonlinearity within 0.35 and 0.49 least significant bits. The ADC, with an active die area of 0.98 mm2, shows a maximum signal-to-noise distortion ratio and spurious free dynamic range of 56.0 and 69.6 dB, respectively, and a power consumption of 19.2 mW at a nominal condition of 0.8 V and 60 MS/s.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号