首页 | 本学科首页   官方微博 | 高级检索  
     

一种用于智能监控的目标检测和跟踪方法
引用本文:王素玉,沈兰荪,李晓光. 一种用于智能监控的目标检测和跟踪方法[J]. 计算机应用研究, 2008, 25(8): 2393-2395
作者姓名:王素玉  沈兰荪  李晓光
作者单位:北京工业大学,信号与信息处理研究室,北京,100022;河北大学,电子信息工程学院,河北,保定,071002;北京工业大学,信号与信息处理研究室,北京,100022
基金项目:国家自然科学基金资助项目(60472036,60772069);北京市自然科学基金资助项目 (4052007);北京市科技新星计划基金资助项目(2005B08);国家“863”计划资助项目(2008AA01A313)
摘    要:在对现有目标检测、跟踪算法进行分析对比的基础上,设计并实现了一种简单有效的目标检测和跟踪方案。首先提出了一种基于像素灰度归类和单模态高斯模型的背景重构算法,能够利用多帧包含前景目标的场景图像重构准确的背景模型。进而以此为基础采用背景减法进行各帧中目标的检测,并选取形心作为匹配特征实现了场景中多个目标的有效跟踪。实验表明,该方法实现简单,无须事先提供背景图像即可实现目标的准确检测和跟踪,其性能明显优于传统基于时间平均背景模型的方法。

关 键 词:目标检测  目标跟踪  背景重构  高斯模型  K均值聚类

Object detection and tracking method for intelligent surveillance
WANG Su yu,SHEN Lan sun,LI Xiao guang. Object detection and tracking method for intelligent surveillance[J]. Application Research of Computers, 2008, 25(8): 2393-2395
Authors:WANG Su yu  SHEN Lan sun  LI Xiao guang
Affiliation:(1.Signal & Information Processing Lab, Beijing University of Technology, Beijing 100022, China; 2.College of Electronic & Information Engineering, Hebei University, Baoding Hebei 071002, China)
Abstract:This paper designed and realized a simple and effective object detection and tracking scheme,based on a review of the existed detection and tracking algorithms.At first,proposed a pixel intensity classification and the single Gaussian model based background reconstruction algorithm,which could provide an accurate background model through a sequence of scene images with foreground objects.Then used the background subtraction method for object detection,selected the center of the object as the matching feature for tracking of multi-objects among the sequence.Experimental results show that the proposed algorithm and scheme is simple to realize,and can detect and track the moving objects effectively,it shows obvious perfor-mance improvement compared with the traditional time-averaged background based method.
Keywords:object detection  object tracking  background reconstruction  Gaussian model  K-means cluster
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号