首页 | 本学科首页   官方微博 | 高级检索  
     


Class‐Based Histogram Equalization for Robust Speech Recognition
Authors:Youngjoo Suh  Hoirin Kim
Abstract:A new class‐based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating the acoustic mismatch between training and test environments, but also at reducing the discrepancy between the phonetic distributions of training and test speech data. The algorithm utilizes multiple class‐specific reference and test cumulative distribution functions, classifies the noisy test features into their corresponding classes, and equalizes the features by using their corresponding class‐specific reference and test distributions. Experiments on the Aurora 2 database proved the effectiveness of the proposed method by reducing relative errors by 18.74%, 17.52%, and 23.45% over the conventional histogram equalization method and by 59.43%, 66.00%, and 50.50% over mel‐cepstral‐based features for test sets A, B, and C, respectively.
Keywords:Acoustic feature compensation  class‐based histogram equalization  robust speech recognition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号