首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacially polymerized nanofiltration membranes: Atomic force microscopy and salt rejection studies
Authors:A Wahab Mohammad  Nidal Hilal  M Nizam Abu Seman
Abstract:Interfacial polymerization is one of the main techniques for producing composite nanofiltration (NF) membranes. In this study, five NF membranes were produced through interfacial polymerization under different conditions of reactions, namely varying reaction time, as well as monomer concentrations. The membranes were then imaged using atomic force microscope (AFM). AFM images provided information of the average pore size, pore size distribution, and surface roughness. For some of the membranes, discrete pore sizes were visible. Increasing the reaction time resulted in decreasing water permeabilities but based on AFM imaging the pore size was of similar value. Increasing the monomer concentration also resulted in decreasing water permeabilities. However, based on AFM imaging the pore size differs considerably. Additional permeation experiments were also carried out using NaCl and Na2SO4 solutions with membranes identified as NF. By fitting the rejection data using a model such as the Donnan‐steric‐pore model, the variation in effective charge density of the membranes was also determined. The ability to tailor composite NF membranes with the right properties will significantly improve membrane performance. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 605–612, 2005
Keywords:atomic force microscopy (AFM)  membranes  modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号