首页 | 本学科首页   官方微博 | 高级检索  
     


Inertial microfluidics for continuous particle filtration and extraction
Authors:Ali Asgar S Bhagat  Sathyakumar S Kuntaegowdanahalli  Ian Papautsky
Affiliation:(1) Department of Electrical and Computer Engineering, University of Cincinnati, 814 Rhodes Hall, ML030, Cincinnati, OH 45040, USA
Abstract:In this paper, we describe a simple passive microfluidic device with rectangular microchannel geometry for continuous particle filtration. The design takes advantage of preferential migration of particles in rectangular microchannels based on shear-induced inertial lift forces. These dominant inertial forces cause particles to move laterally and occupy equilibrium positions along the longer vertical microchannel walls. Using this principle, we demonstrate extraction of 590 nm particles from a mixture of 1.9 μm and 590 nm particles in a straight microfluidic channel with rectangular cross-section. Based on the theoretical analysis and experimental data, we describe conditions required for predicting the onset of particle equilibration in square and rectangular microchannels. The microfluidic channel design has a simple planar structure and can be easily integrated with on-chip microfluidic components for filtration and extraction of wide range of particle sizes. The ability to continuously and differentially equilibrate particles of different size without external forces in microchannels is expected to have numerous applications in filtration, cytometry, and bioseparations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号